Dishevelled is a component of the frizzled signaling pathway in Drosophila.

نویسندگان

  • R E Krasnow
  • L L Wong
  • P N Adler
چکیده

The tissue polarity genes in Drosophila are required to coordinate cell polarity within the plane of the epidermis. Evidence to date suggests that these genes may encode components of a novel signal transduction pathway. Three of the genes, frizzled (fz), dishevelled (dsh), and prickle (pk) share a similar tissue polarity phenotype, suggesting that they function together in a single process. dsh is also known to function as a mediator of wingless (wg) signaling in a variety of developmental patterning processes in the fly. In this study, we make use of a fz transgene and a hypomorphic fz allele as genetic tools in an attempt to order these genes in a genetic hierarchy. Our results argue that dsh encodes a dosage sensitive component required for fz function and that it likely acts downstream of fz in the generation of tissue polarity. Our findings suggest that dsh may have a general role in signal transduction, perhaps as a component of a receptor complex.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Structure–Function Dissection of the Frizzled Receptor in Drosophila melanogaster Suggests Different Mechanisms of Action in Planar Polarity and Canonical Wnt Signaling

Members of the Frizzled family of sevenpass transmembrane receptors signal via the canonical Wnt pathway and also via noncanonical pathways of which the best characterized is the planar polarity pathway. Activation of both canonical and planar polarity signaling requires interaction between Frizzled receptors and cytoplasmic proteins of the Dishevelled family; however, there has been some dispu...

متن کامل

The Fz-Dsh planar cell polarity pathway induces oriented cell division via Mud/NuMA in Drosophila and zebrafish.

The Frizzled receptor and Dishevelled effector regulate mitotic spindle orientation in both vertebrates and invertebrates, but how Dishevelled orients the mitotic spindle is unknown. Using the Drosophila S2 cell "induced polarity" system, we find that Dishevelled cortical polarity is sufficient to orient the spindle and that Dishevelled's DEP domain mediates this function. This domain binds a C...

متن کامل

A frizzled homolog functions in a vertebrate Wnt signaling pathway

BACKGROUND Wnts are secreted proteins implicated in cell-cell interactions during embryogenesis and tumorigenesis, but receptors involved in transducing Wnt signals have not yet been definitively identified. Members of a large family of putative transmembrane receptors homologous to the frizzled protein in Drosophila have been identified recently in both vertebrates and invertebrates, raising t...

متن کامل

Prickle Mediates Feedback Amplification to Generate Asymmetric Planar Cell Polarity Signaling

Planar cell polarity signaling in Drosophila requires the receptor Frizzled and the cytoplasmic proteins Dishevelled and Prickle. From initial, symmetric subcellular distributions in pupal wing cells, Frizzled and Dishevelled become highly enriched at the distal portion of the cell cortex. We describe a Prickle-dependent intercellular feedback loop that generates asymmetric Frizzled and Disheve...

متن کامل

Mutations in the cadherin superfamily member gene dachsous cause a tissue polarity phenotype by altering frizzled signaling.

The adult cuticular wing of Drosophila is covered by an array of distally pointing hairs that reveals the planar polarity of the wing. We report here that mutations in dachsous disrupt this regular pattern, and do so by affecting frizzled signaling. dachsous encodes a large membrane protein that contains many cadherin domains and dachsous mutations cause deformed body parts. We found that mutat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Development

دوره 121 12  شماره 

صفحات  -

تاریخ انتشار 1995